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Solution to Assignment 11

Section 9.1: no. 8, 9, 11, 13.

(8). Take a, = (="

Alternating Test.

. You may use definition to show it converges, but later you can use the

(9). For € > 0, there is some ng such that
n
\Zak\ <e/2, Vm,n>ng.
k=m

But then
na, = (N —ng)an + noan < any + -+ + ap + noa, < /24 noay .

As > a,, converges implies lim,,_,~ a, = 0, we can find some n; > ng such that nga, < /2 for
all n > n;. Putting things together, for n > n;,

€ €
OSnan<§+noan<2x§:£.

(11). The assumption implies that there is some a and ng such that [n?a, —a| < 1 for all n > ny.

Therefore,
n

> a

k=m

As > n7% < oo, for € > 0, there is some ny > ng such that > p_ k=2 < ¢/(la] + 1), so
| > h_,, ak| < e for all m,n > ny too.

n
1
<(al+1)Y] 5, mmzng.

k=m

(13a).

vn+1l—yn 1 S 1

Vn (Vn+1+vn)yn — 20n+1)

As > 1/(n+1) is divergent, this series is also divergent.

(13b).
vn+1—+4/n _ 1 1

< .
n (Vn+1+n)n ~ n3/2

As > n~3/2 < 0o, this series is absolutely convergent.

Supplementary Exercise

You should use the new definition of exponential, logarithmic, cosine and sine functions in the
following problems.

1. Establish the following properties of the exponential and log functions: For every o > 0,
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(a)

:L,OL

lim — =0,
rz—o0 et

lim |z[%* =0,
T——00

. logzx
lim

T—$00 ‘:L'|O‘

=0,

(d)

lim |z|*log|z| =0 .
z—0

Solution. (a). We can fix some k such that 2 < z* for all x > 1. Tt suffices to prove
(a) by assuming o = k. Using the expression

e " xk+1
E— — -
e —E(:L')—Zn! > Gr1) x>0,
n=0
we have N
E+1)! kE+1)!
ng—g( 2— )xk:< +1) —0, asz—o00,
er k1 x
done.
(b). Follow from (a) after letting = be —zx.

(c). Letting y = logz,x > 1, is turned into %y, and the desired conclusion follows
e

log
[
from (a).

(d). Let y = 1/|x| and then use (c).
Note. This exercise is about the growth of the exponential and logarithmic functions com-
pared to powers. EVERY math major should know it.

2. Establish the following properties of the cosine and sine functions:

(a) ‘
lim 22— q
x—0 X

(b)
. 1—-cosx 1
lim ——— = —
z—0 J,‘Z 2

Solution. After we have rigorously proved the derivative of the sine function is cosine and
cos0 = 1 as well as the L’Hospital Rule, we can use them to get (a). Similarly we have
(b). An alternative way is to apply the Taylor’s Expansion Theorem.

Note. Again EVERY math major should know this.
3. Study the improper integrability of the following integrals:
(a)
1
/ x4 log x dx,
0
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(b)

/1 (1 —cosz)logx d
0 )

()

(d) Optional.

0o -
S1n T
dz .
0 xr

Solution. (a). The integrand is unbounded near 0. Using lim,_,q+ “logx = 0 for every
positive a, we let @ = 1/4. For ¢ = 1, there is some § such that |z'/*logz| < 1 for
€ (0,6). Hence z~Y*logx < o~ 4x=/* = 2=1/2. Therefore,

/ 14 log z dx

as a,c — 0. By Cauchy Criterion, the improper integral exists.

S/ xil/zda::2cl/2—2a1/2—>0,

b) (1 — cosx)/x? tends to 1/2. We can fix some § such that 1/4 < (1 — cosz)/x? for
x € (0,6). Then
(1-— cosx)|logm| |logac|
a3 dr  — 4:E

for some p < § (to make sure that |logx| > 1). Therefore,

P (1 —cosz)logx !
dx > —dr —
/a 3 x_/a 1 & = 00,

as a — 07. We conclude that the improper integral does not exist.

(c) We use e > 14z for z > 0 to get 0 < sinz/(e* — 1) < sinz/x < 1. Hence

€(0,p),

/

o

sin

/ — dr <ad —a—0,
o €e*—1

L sing
dx
0 et — 1

exists. On the other hand, use e > 1 + 22/2 to get |sinz|/(e® — 1) < 2/2%. Hence

" |sinz| "9 1 1
dr< | Sde=2(;-=>
/b er —1 x_/b 22 <b b’>—>0’

as b, — oco. It shows

as a’ —a — 0. It shows that

exists too. Hence this improper integral exists.

(d) Sketchy proof. No trouble at 0. We express the integral as

i/(nﬂ) smx Z/ sin mr—i—y dy—/w (_1)nsinydy
nm nm+y 0 nmw+y

n=0
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For two consecutive terms 2n and 2n + 1, they have different signs and

T siny i siny 4 msiny C
Y gy [ Y gy = dy< .
0 2nm+y 0o @n+Dm+y o Cnm+y)((2n+ )7 +y) n

which shows that the improper integral exists.

4. Optional. Consider Y > a, and let > >°, b, and > 2, ¢, where b, = a; and ¢, = a,,
(so an = a;f —a;,). Show that Y >° b, and Y 7, ¢, both are divergent to infinity when

> o2 | ay is conditionally convergent.

Solution. In case one the these series is convergent, say > by, let us show that >_ ¢, is also
convergent, so Y |a,| = > by, + Y ¢, is also convergent, contradicting that > a,, is only
conditionally convergent. Let € > 0, there is some ng such that |apm41 + -+ + an| < £/2
for all n,m > ng. On the other hand, choose ny > ng, byt + -+ + by < €/2 for all
n,m > ni. By subtracting these two inequalities and by choosing indices properly, we
have ¢pq1 + -+ - + ¢ < € for all n,m > ny, done.

5. Optional. Show that every conditionally convergent series admits a rearrangement which
is divergent to infinity.

Solution. Adapting the notation in the previous problem, first we pick by,--- , by, such
that by +- - -+by, > 14c¢1. Next, add —¢; to the finite sequence to get {b1, b2, -+ ,bp,, —c1}.
Then add bp 41, - ,bp, so that by +ba + -+ by, —c1 +bpyp1 + -+ bpy > 2+ co.
Add —cg to get {b1,b2,- -+ ,bp,, —C1,bpy41, -+ , by, —c2}. Then add byyt1, -+ , by so that
by +--- —c2 4+ bpyy1 + -+ + bpy > 3+ c3 . By repeating the construction, we obtain a
rearrangement whose partial sum is greater than any n. Note that this is possible because

> by = 0.

Note. A theorem of Riemann states that given any number s including oo, there is a
rearrangement on a conditionally convergent series converging to this number. You may
google for it.



